搅局者钙钛矿

文章来源:
字体:
发布时间:2022-07-27

1954年,在贝克雷尔发现光伏效应125年之后,美国科学家恰宾和皮尔松为它找到真正发挥价值到应用场景——他们在美国贝尔实验室首次制成转化效率为6%的实用单晶硅太阳电池,由此,将太阳能转换为电能的光伏技术诞生了。

✪  左:亚历山大·贝克雷尔(Alexandre Becquerel);右:Lev Perovski。

✪  1954年,美国贝尔实验室首次制成转化效率为6%的实用单晶硅太阳电池。

此后很长一段时间里,晶硅太阳能电池,都是成本和效率极佳的统一体,但作为能源史上技术迭代最典型的产业之一,光伏产业在效率和效益的催逼下,不断掀起狂风巨浪,晶体硅电池的效率提升之路愈发举步维艰。

事实上,对于天然矿物转化太阳能效率的局限性,科学界心知肚明,一眼到底,他们很早就发现,晶硅太阳能电池的转化效率理论极限值为29.43%,于是,从1970年代开始,便试图找到一种实验室合成材料,希望在平衡成本和效率的基础之上,替代晶硅来刺穿那层恼人的天花板。

有机发光二极管(OLED)之父、曾在美国纽约罗切斯特的柯达研究实验室工作的美国国家工程院院士邓青云和米夏埃尔•格雷策尔都曾沿着有机太阳能电池方向进行探索,但均并未掀起波澜。

大家苦苦探索,求而不得,直到2009年,沉睡了180年的钙钛矿材料在日本被命运唤醒,开始了它生命的一次转折。

彼时,日本科学家宫坂力试着将金属卤化物钙钛矿材料用于太阳能电池的开发,虽然转化率只有3.8%,并很快被束之高阁,但正如前文所讲,它向科学界摇响的灵感之铃,使其在3年之后被回音重新唤醒,并以令人瞠目的转化率提升速度和成本优势,成为刺向晶硅世界的一根长矛。

C。搅入晶硅世界

长矛的锐度愈刷愈利。

从2013年到2015年,实验室里合成的钙钛矿晶体不断迭代和优化,如魔豆里破皮而出的藤蔓,其转化效率一路从10%攀升至接近20%。

2016年,瑞士洛桑联邦理工学院用涂布工艺和简易真空工艺结合,制备出SD卡大小的钙钛矿太阳能电池,单元转换效率一下超过了20%。

第二年,韩国科学家继续改进金属卤化物吸光材料,将其能量转化效率提升至22.1%。

此后几年,「藤蔓」依然没有停止生长。

最新数据依然来自瑞士洛桑联邦理工学院,它和瑞士电子与微技术中心一起宣称,其研发的钙钛矿硅叠层光伏电池,转化效率已达创纪录的31.3%。

但这并不令人惊奇,因为在被视为未来发展方向的钙钛矿叠层电池里,其理论数字带来更大想象空间——双叠层转换效率达43%,三层理论效率已超50%。

就在钙钛矿用不断增长的转化率挑动晶硅世界的神经时,后者的光电转化效率却并无突破性长进。

1970年代这个数字为13%、14%,2000年后进入平台期,此后小有进步,到了2017年,便停在26.7%左右。

尽管晶硅光伏领域里的先锋们依然不断探索新技术,N型异质结、N型TOPcon、以及N型IBC技术也都引起聚光灯的追随,但物理极限的宿命如同一个不可翻越的屏障矗立在眼前。

新闻爆料

图片精选